(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cond1(true, s(x40_4), y, 0) →+ cond1(true, x40_4, y, 0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x40_4 / s(x40_4)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)